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Abstract

We show that any primitive substitution tiling of R2 creates a sep-
arated net which is biLipschitz to Z2. Then we show that if H is a
primitive Pisot substitution in Rd, for every separated net Y , that cor-
responds to some tiling τ ∈ XH , there exists a bijection Φ between
Y and the integer lattice such that supy∈Y ‖Φ(y)− y‖ < ∞. As a
corollary we get that we have such a Φ for any separated net that cor-
responds to a Penrose Tiling. The proofs rely on results of Laczkovich,
and Burago and Kleiner.

1 Introduction

Definition. A set Y ⊆ Rd is called a separated net, or a Delone set, if there
exist constants R, r > 0 such that every ball of radius R intersects Y and
every ball of radius r contains at most one point of Y .

Definition 1.1. Let Y1 and Y2 be separated nets. We say that a mapping
Φ : Y1 → Y2 is biLipschitz if there exists a constant C ≥ 1 such that for
every y, y′ ∈ Y1 we have

1
C
· ∥∥y − y′

∥∥ ≤ ∥∥Φ(y)− Φ(y′)
∥∥ ≤ C · ∥∥y − y′

∥∥ ,

where ‖·‖ is some (any) norm on Rd. Φ is called a bounded displacement if

sup
y∈Y1

‖Φ(y)− y‖ < ∞.

Consider two equivalence relations on the set of all separated nets. In
one, two nets are equivalent if there exists a biLipschitz bijection between
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them. In the other, the relation holds if there is a bijection which is also a
bounded displacement. Since we are dealing with functions between sepa-
rated nets, it is easy to verify that the second relation refines the first. A
natural question is: Is every separated net in Rd biLipschitz to Zd? This
question was first posed by Gromov in [Gr93]. It was answered negatively in
1998 by McMullen [McM98] and also independently by Burago and Kleiner
[BK98]. Their results imply, in particular, that there are separated nets in
Rd which are not a bounded displacement of Zd, not even after rescaling.

In this paper we deal with separated nets which are obtained from tilings
of Euclidean spaces. When a tiling of Rd is given, by placing one point in
each tile, and keeping the minimal distance property, one gets a separated
net. Since we are studying the equivalence classes under bounded displace-
ment, the positions of the points in the tiles do not matter. In particular
a tiling of Rd gives rise to a separated net; more precisely, an equivalence
class of nets, in both of the above senses. Our main objective is to prove
the two following theorems:

Theorem 1.2. Any separated net that corresponds to a primitive substitu-
tion tiling of R2 is biLipschitz to Z2.

Definition 1.3. Let H be a primitive substitution in Rd and denote by λ2

an eigenvalue of AH which is second in absolute value (see Definitions 2.1,
2.2, 2.5). If |λ2| < 1 we say that H is a Pisot substitution.

Theorem 1.4. Let H be a Pisot substitution in Rd. Then for every substitu-
tion tiling of H there exists a constant β and bounded displacement between
the corresponding separated net Y and β · Zd.

Here we also answer a question of Burago and Kleiner ([BK02], p.2).

Corollary 1.5. Any separated net that is created from a Penrose Tiling is a
bounded displacement of β ·Z2, for some β > 0 (and in particular biLipschitz
to Z2).

The proofs of Theorem 1.2 and of Theorem 1.4 rely on a result of Burago
and Kleiner [BK02] and a result of Laczkovich [L92] respectively. Both of
these results deal with the difference between the number of tiles in a large
(bounded) set U and the area of U . We use the Perron Frobenius Theorem
and some dynamical properties of the matrix of the tiling in order to get
good estimates for the number of tiles in large sets of certain kind. Then,
by using properties of substitution tilings, we fill U with such sets, that get
smaller and smaller near the boundary of U , and get an estimate for the
number of tiles in U .
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2 Basic Definitions of Tilings

We use standard definitions of tilings. Similar definitions can be found at
[GS87], [Ra99], [Ro04].

A set S ⊆ Rd is a tile if it is homeomorphic to a closed d-dimensional
ball. A tiling of a set U ⊆ Rd is a countable collection of tiles, with pairwise
disjoint interiors, such that their union is equal to U . We say that two tiles
are translation equivalent if one is a translation of the other. Representatives
of the equivalence classes are called prototiles. A tiling space, XT , is the set
of all tilings of Rd by prototiles from T . A tiling P of a bounded set U ⊂ Rd

is called a patch. We call the set U the support of P and we denote it by
supp(P ). We extend the equivalence relation from the last Definition to
patches and denote by T ∗ the equivalence class representatives.

Substitution Tilings

Let ξ > 1 and let T = {S1, . . . , Sk} be a set of d-dimensional prototiles.

Definition 2.1. A substitution is a mapping H : T → ξ−1T ∗ such that
for every i we have supp(Si) = supp(H(Si)). In other words it is a set of
dissection rules that shows us how to divide the prototiles to other prototiles
from T with a smaller scale. We extend H to the set of all tiles (in a given
tiling), to T ∗ and to any tiling τ ∈ XT by applying H separately on every
tile. The constant ξ is called the inflation constant of H.

Definition 2.2. Let H be a substitution defined on T . Consider the fol-
lowing set of patches:

P = {(ξH)m(Ti) : m ∈ N, i = 1, . . . , k} .

The substitution tiling space XH is the set of all tilings of Rd that for every
patch P in them there is a patch P ′ ∈ P such that P is a sub-patch of P ′.
Every tiling τ ∈ XH is called a substitution tiling of H.
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Proposition 2.3. If H is a primitive substitution then XH 6= ∅ and for
every τ ∈ XH and for every m ∈ N there exists a tiling τm ∈ XH that
satisfies (ξH)mτm = τ .

Proof. See [Ro04].

The construction of substitution tilings is explained with more details in
[Ro04]. We denote by H(−m)(τ) a tiling τ ′ that satisfies (ξH)mτ ′ = τ .

Matrices of Substitution

Definition. A matrix A is called positive, and denoted A > 0, if all its
entries are positive. A is called nonnegative, and denoted A ≥ 0, if the
entries of A are nonnegative. A is called primitive if there exists an m ∈ N
such that Am > 0.

Definition 2.4. For a substitution H, the representative matrix of H is a
k × k matrix BH = (bij), where bij is the number of prototiles which are
translation equivalent to Si in ξH(Sj). We say that H is primitive if BH is
primitive.

The matrix BH can be very large sometimes and does not describe ex-
actly what we need here. Consider the following equivalence relation on
prototiles: Si ∼ Sj if there exists an isometry O such that Si = O(Sj)
and H(Si) = O(H(Sj)) (this is actually a condition on the representatives,
and it is obvious that it is well defined). We call the representatives of the
equivalence classes basic tiles. By this definition, we can also think of H as
a dissection rule on the basic tiles and extend it to tiles, patches and tilings
as before.

Definition 2.5. Denote by {T1, . . . , Tn}, (n ≤ k) the set of the basic tiles.
Define the substitution matrix of H to be an n × n matrix, AH = (aij),
where aij is the number of basic tiles in ξH(Tj) which are equivalent to Ti.

Example. Let H be the substitution of the Penrose Tiling. There are 20
different prototiles (rotations and reflections are not allowed):
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Then BH is a 20×20 matrix. On the other hand, there are only two different
basic tiles, with the following dissection rule:
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then AH =
[
2 1
1 1

]
, a 2× 2 matrix.

Denote by ei the i’th element of the standard basis of Rn (or Rk). Then
AH(ei) is the i’th column of AH (and the same for BH in Rk). Thus, if
ei represents one tile of type i, multiplying the vector ei by these matrices
gives us a vector that represents the number of basic tiles (prototiles) of each
kind obtained after applying H on the corresponding tile. By linearity, this
is true for any vector in Rn (or Rk). Denote by π : Rk → Rn the quotient
map that defines the relation ∼. Then by the definition of ∼, ker(π) is
BH -invariant and the following diagram commutes

Rk

π

²²

BH // Rk

π

²²
Rn

AH // Rn

Hence, it is easy to verify that the eigenvalues of BH , that has an eigenvector
v /∈ ker(π), are also eigenvalues of AH .

3 Properties of Substitution

We denote by Rn
+ the set of all nonnegative vectors in Rn. For a finite set P

we denote by #P the number of elements of P . We also use the notations
µd(·), ‖·‖∞ and ‖·‖2 for d-dimensional Lebesgue measure, the max norm and
the Euclidean norm in Rn respectively.

Definition. Let λ1, . . . , λn be the eigenvalues of a matrix A. The spectral
radius of A is ρ(A) = maxi{|λi|}. For a nonnegative primitive matrix A, an
eigenvalue λ that satisfies |λ| = ρ(A) is called a Perron Frobenius eigenvalue.
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Let H be a primitive substitution with an inflation constant ξ and let
τ0 ∈ XH . Denote by {T1, . . . , Tn} the set of d-dimensional basic tiles. We
denote by λ1 the Perron Frobenius eigenvalue of AH and let λ2 be an eigen-
value which is second in absolute value. For every m ∈ N we denote τm =
H(−m)(τ0), these are substitution tilings with basic tiles {ξmT1, . . . , ξ

mTn}.
Then for every patch P of τm, Hm(P ) is a patch of τ0 and supp(Hm(P )) =
supp(P ). We denote by t

(m)
i the number of tiles from Hm(P ) which are

equivalent to Ti.
Our main objective in this section is to prove the following proposition:

Proposition 3.1. Let H be a primitive substitution, then there are constants
a1, a2 and C2, that depend only on H, such that for every 0 < ε < λ1 − |λ2|
and for any τ0 ∈ XH there exists an N such that for every m ≥ N and a
patch P ∈ τm we have

t
(m)
1 (a1 − C2δ

m) ≤ #P ≤ t
(m)
1 (a1 + C2δ

m)

t
(m)
1 (a2 − C2δ

m) ≤ µd(V ) ≤ t
(m)
1 (a2 + C2δ

m),
(1)

where V = supp(P ) and

(2) δ =
|λ2|+ ε

λ1
< 1.

We start with some notions of matrix theory. See also [BP79], [H07].

Proposition 3.2. Let H be a primitive substitution with an inflation con-
stant ξ and let {T1, . . . , Tn} be the set of d-dimensional basic tiles, then

(a) ρ(AH) is an eigenvalue of AH , with an algebraic multiplicity one, and
the associate eigenvector is positive.

(b) If v > 0 is an eigenvector of AH then v corresponds to ρ(AH).

(c) Denote by (v1, . . . , vn) a basis of generalized eigenvectors of AH with
‖vi‖2 = 1 for all i, where v1 is the eigenvector that corresponds to
ρ(AH). Then sp{v2, . . . , vn} ∩ Rn

+ = {0}.
(d) In addition, ξd = ρ(AH), and in particular ρ(AH) > 1.

Proof. (a) This is the well known Perron Frobenius Theorem, also see [Q87],
p.91.

(b) See [BP79] Theorem 2.1.4.
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(c) This is a well known fact, see [H07], 26.1.4.(d).

(d) Consider the vector v =




s1
...

sn


 where si is the area of Ti. Since the

substitution divides every Ti to smaller basic tiles, by using Definition
2.5 one can easily show that ξdv = At

Hv, where At
H is the transpose

matrix of AH . By (b) the proof is complete.

Let A ≥ 0 be a primitive matrix. We use the notations λ1 and λ2 as
before. We also denote by v1 the eigenvector of λ1 with ‖v1‖2 = 1 and by
W the generalized eigenspace of the other eigenvalues. For a vector u ∈ Rn

we write u = β1(u)v1 + β2(u)wu where wu ∈ W with ‖wu‖2 = 1.

Proposition 3.3. For a primitive matrix A ≥ 0 there exists a constant
C > 0, that depends only on A, such that for every ε > 0 there exists an N
such that for every m ≥ N and a vector u ∈ Rn

+ we have

(3)
∥∥∥∥

Amu

β1(u)λm
1

− v1

∥∥∥∥
∞
≤ C · δm,

where δ as in (2).

Proof. We denote K = {v ∈ Rn
+ : ‖v‖2 = 1} and consider the restrictions of

β1 and β2 to K. By Proposition 3.2 (c) we have β1(u) > 0 for every u ∈ K.
By the compactness of K we denote

α1 = min
u∈K

{β1(u)} > 0 and α2 = max
u∈K

{|β2(u)|} > 0.

Denote C ′ = α2
α1

, then C ′ > 0 and for every u ∈ Rn
+ we have:

|β2(u)|
β1(u)

=
‖u‖2 ·

∣∣∣β2( u
‖u‖2 )

∣∣∣
‖u‖2 · β1( u

‖u‖2 )
≤ α2

α1
= C ′.

Notice that there is a constant a > 0 such that for every m ∈ N and w ∈ W
with ‖w‖2 = 1 we have ‖Am(w)‖∞ ≤ a(|λ2|+ ε)m. Then

∥∥∥∥
Amu

β1(u)λm
1

− v1

∥∥∥∥
∞

=
∥∥∥∥
Am(β1(u)v1 + β2(u)wu)− β1(u)λm

1 v1

β1(u)λm
1

∥∥∥∥
∞

=
∥∥∥∥
Am(β2(u)wu)

β1(u)λm
1

∥∥∥∥
∞

=
|β2(u)| · ‖Am(wu)‖∞

β1(u)λm
1

≤ C ′ · a(|λ2|+ ε)m

λm
1

,

which completes the proof for C = C ′a.
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Proposition 3.4. There are constants C1, c2, . . . , cn > 0, that depend only
on H, such that for every 0 < ε < λ1 − |λ2| there exists an N1 such that
every m ≥ N1 satisfies

(4)

∣∣∣∣∣
t
(m)
i

t
(m)
1

− ci

∣∣∣∣∣ ≤ C1δ
m

for every patch P of τm, where δ as in (2).

Proof. By Proposition 3.2, λ1 > 1 and it has an associated eigenvector

v1 =




1
c2
...

cn


 (c1 = 1) with ci > 0 for i = 2, . . . , n. Denote v′1 = v1

‖v1‖2 . Fix

0 < ε < λ1−|λ2|, then there is an N such that for every m ≥ N and u ∈ Rn
+

we have (3) with v′1 instead of v1.
We pick N1 ≥ N such that every m ≥ N1 satisfies

(5) C ‖v1‖2 δm ≤ 1
2
.

For an arbitrary m ≥ N1 and a patch P of τm, consider the vector

u =




t
(0)
1
...

t
(0)
n


, where t

(0)
i is the number of tiles from P which are equivalent to

ξmTi. Obviously u ∈ Rn
+ r {0}, then u satisfies (3) with v′1 instead of v1.

Hence ∥∥∥∥
‖v1‖2 ·Am

Hu

β1(u)λm
1

− v1

∥∥∥∥
∞
≤ C ‖v1‖2 δm.

If we denote ‖v1‖2·Am
Hu

β1(u)λm
1

=




b
(m)
1
...

b
(m)
n


 then for i = 2, . . . , n we have

(6)
∣∣∣b(m)

i − ci

∣∣∣ ≤ C ‖v1‖2 δm and
∣∣∣b(m)

1 − 1
∣∣∣ ≤ C ‖v1‖2 δm.

In particular, by (5), 1
2 ≤ b

(m)
1 ≤ 11

2 , for every m ≥ N1. Notice that by the
definitions of u, P and AH we have

(7) Am
Hu =




t
(m)
1
...

t
(m)
n


 .
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Therefore for i = 2, . . . , n we have
∣∣∣∣∣
t
(m)
i

t
(m)
1

− ci

∣∣∣∣∣
(7)
=

∣∣∣∣∣
b
(m)
i

b
(m)
1

− ci

∣∣∣∣∣ ≤
1∣∣∣b(m)
1

∣∣∣

(∣∣∣b(m)
i − ci

∣∣∣ +
∣∣∣ci − b

(m)
1 ci

∣∣∣
)

(5),(6)

≤ 2C ‖v1‖2 (1 + ci) · δm ≤ C1 · δm,

where C1 = 2C ‖v1‖2 (1 + maxi{ci}), as required.

We denote by s1, . . . , sn the areas of {T1, . . . , Tn} respectively. Define

(8) a1 =
n∑

i=1

ci , a2 =
n∑

i=1

cisi and α =
a1

a2

Proof of Proposition 3.1. Let 0 < ε < λ1 − |λ2|. By Proposition 3.4 there
exists an N = N1 such that (4) holds for every m ≥ N and a patch P in
τm, for some constant C1. Then for i = 2, . . . , n we have

t
(m)
1 (ci − C1 · δm) ≤ t

(m)
i ≤ t

(m)
1 (ci + C1 · δm)

and

t
(m)
1 (cisi − C1 · δmsi) ≤t

(m)
i si ≤ t

(m)
1 (cisi + C1 · δmsi) .

Therefore

t
(m)
1

(
n∑

i=1

ci − nC1 · δm

)
≤

n∑

i=1

t
(m)
i ≤ t

(m)
1

(
n∑

i=1

ci + nC1 · δm

)

t
(m)
1

(
n∑

i=1

cisi − C1 · δm
n∑

i=1

si

)
≤

n∑

i=1

t
(m)
i si ≤ t

(m)
1

(
n∑

i=1

cisi + C1 · δm
n∑

i=1

si

)
.

Thus, according to (8), for C2 = max{C1n, C1
∑n

i=1 si} we get (1) as re-
quired.

4 The Main Results

We prove Theorem 1.2 by showing that substitution tilings create separated
nets that satisfy the conditions of the following theorem:
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Theorem 4.1 (Burago and Kleiner [BK02]). Let Y be a separated net in
R2. For a real number α > 0 and a square B with integer coordinates define:

eα(B) = max
{

α · µ2(B)
#(B ∩ Y )

,
#(B ∩ Y )
α · µ2(B)

}

Eα(2i) = sup
{
eα(B) : B as above with an edge of length 2i

}
.

If there exists an α > 0 such that the product
∏∞

j=1 Eα(2j) converges, then
Y is biLipschitz to Z2.

Proof of Theorem 1.2. It suffices to show that there are constants C1, k1 > 0
and ω < 1 such that for every square B with an edge of length 2j = k ≥ k1

we have

(9)
|α · µ2(B)−#(B ∩ Y )|

#(B ∩ Y )
≤ C1·ωj and

|α · µ2(B)−#(B ∩ Y )|
α · µ2(B)

≤ C1·ωj .

Then we get, for all large enough j,
∣∣Eα(2j)− 1

∣∣ ≤ C1 · ωj ,

which implies the convergence of the product.
By Proposition 3.2 we can pick an ε > 0 such that λ1 > |λ2| + ε. By

Proposition 3.1 there is an N1 such that for every m ≥ N1 and a patch P
in τm, (1) holds. Let N ≥ N1 such that for every m ≥ N we have

(10) C2 · δm ≤ 1
2

min{a1, a2} (a1, a2 as in (8), δ as in (2)).

We pick k′ = ξ2N .
Let B be an arbitrary square in R2 with an edge of length k ≥ k′. Let

m ∈ N such that ξ2m ≤ k < ξ2m+2, then m ≥ N . Consider the patch

P = {T ∈ τm : T ⊆ B},

then P satisfies (1), where V = supp(P ) as before.
Let R and r be constants such that every ball of diameter R contains a

tile of τ0 and every tile of τ0 contains a cube of area r. From the definition
of P , for every x ∈ B that satisfies d(x, ∂B) ≥ R · ξm, the tile of τm that
covers x must be in P . Then V contains a square with an edge of length
k − 2R · ξm. Since R · ξm ≤ R ·

√
k, V contains a square with an edge of

length k − 2R ·
√

k. If so, there is a k′′ such that for every k ≥ k′′ we have
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µ2(V ) ≥ 1
2k2. Then, by (1), there is a constant b1 > 0 such that for every

k ≥ k′′ we have

(11) b1 · k2 ≤ t
(m)
1 .

Define k1 = max{k′, k′′}. Consider squares B with an edge of length
k ≥ k1. We want to estimate #(B ∩ Y ) and µ2(B). Define the following
patch of τ0:

P1 = {T ∈ τ0 : T ∩B 6= ∅} V1 = supp(P1).

A similar explanation to the one above gives the estimate

V1 r V ⊆ {x : d(x, ∂B) ≤ R · ξm} ⊆ {x : d(x, ∂B) ≤ R ·
√

k}.
Then µ2(V1 r V ) ≤ 4R · k

√
k and so #((V1 r V ) ∩ Y ) ≤ 4R·k

√
k

r . Therefore

#P ≤ #(B ∩ Y ) ≤ #P + #((V1 r V ) ∩ Y ),

µ2(V ) ≤ µ2(B) ≤ µ2(V ) + µ2(V1 r V ).

Hence, by (1)

t
(m)
1 (a1 − C2δ

m) ≤ #(B ∩ Y ) ≤ t
(m)
1 (a1 + C2cδ

m) +
4R · k

√
k

r
,

t
(m)
1 (a2 − C2δ

m) ≤ µ2(B) ≤ t
(m)
1 (a2 + C2δ

m) + 4R · k
√

k.

Therefore, for α as in (8) we have

α · µ2(B)−#(B ∩ Y )
#(B ∩ Y )

≤ α(t(m)
1 (a2 + C2δ

m) + 4R · k
√

k)− t
(m)
1 (a1 − C2δ

m)

t
(m)
1 (a1 − C2δm)

=
t
(m)
1 C2δ

m(α + 1) + 4αR · k
√

k

t
(m)
1 (a1 − C2δm)

(11)

≤ δm · C2(α + 1)
a1 − C2δm

+
1√
k
· 4αR

b1(a1 − C2δm)
.

In the same way we get similar inequalities for α·µ2(B)−#(B∩Y )
#(B∩Y ) and then for

|α·µ2(B)−#(B∩Y )|
α·µ2(B) . Hence, considering (10), there is a constant C ′

1 such that

max
{ |α · µ2(B)−#(B ∩ Y )|

α · µ2(B)
,
|α · µ2(B)−#(B ∩ Y )|

#(B ∩ Y )

}
≤

(
δm +

1√
k

)
·C ′

1.

Notice that m was chosen in a way that ξ2m ≤ k, thus ξm ≤
√

k. Since we
are looking on squares with k = 2j , we get that m ≤ j · logξ

√
2. Therefore,

ω = max{δlogξ

√
2, 1/

√
2} satisfies the condition in (9), with C1 = 2C ′

1.
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We now turn to the proof of Theorem 1.4. The proof relies on the
following theorem:

Theorem 4.2 (Laczkovich [L92]). For a separated net Y ⊆ Rd and α > 0
the following statements are equivalent:
(i) There is a positive constant C such that for every finite union of unit
cubes U we have

(12) |#(Y ∩ U)− αµd(U)| ≤ C · µd−1(∂U).

(ii) There is a bounded displacement φ : Y → α−1/dZd.

For the proof of Theorem 1.4 we will need the two following lemmas:

Lemma 4.3. There is a constant C3 such that for every 0 < ε < λ1 − |λ2|
there exists an N such that for every m ≥ N and a tile T in τm we have

(13) |#(T ∩ Y )− αµd(T )| ≤ C3 · (λ2 + ε)m, where α as in (8).

Proof. We think of T as a patch in τm and denote P0 = Hm(T ), the patch in
τ0 with supp(P0) = T . Then by Proposition 3.1 we have (1) with T instead
of P , for every m ≥ N1. On the other hand, T is equivalent to ξmTi for
some i ∈ {1, . . . , n}, then µd(T ) = (ξd)m · si. Then

t
(m)
1 (a2 − C2δ

m) ≤ (ξd)m · si,

which implies, for every m which is greater than some N2,

(14) t
(m)
1 ≤ (ξd)m · si

a2 − C2δm
≤ C ′

3(ξ
d)m (3.2)(c)

= C ′
3λ

m
1 .

According to (1) we have

#(T ∩ Y )− αµd(T )
(1)

≤ t
(m)
1 (a1 + C2δ

m)− αt
(m)
1 (a2 − C2δ

m)
(8)
= t

(m)
1 C2δ

m(1 + α),

and in a similar way we get it for αµd(T )−#(T ∩ Y ). Then

|#(T ∩ Y )− αµd(T )| ≤ t
(m)
1 C2δ

m(1 + α)
(14)

≤ C ′
3λ

m
1

( |λ2|+ ε

λ1

)m

C2(1 + α).

All this is true for every m ≥ N , where N = max{N1, N2}. Then for
C3 = C ′

3 · C2(1 + α) we get the required inequality.
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Lemma 4.4. There is a constant C, that depends only on the dimension d,
such that for any s > 1

(15) µd ({x ∈ U : d(x, ∂U) ≤ s}) ≤ C · sd · µd−1(∂U)

holds for any finite union of d-dimensional cubes U .

Proof. This a direct result of Lemma 2.1 and Lemma 2.2 of [L92].

Proof of Theorem 1.4. First we claim that it is sufficient to show inequality
(12) for every set U which is a finite union of cubes with an edge of length
k, for some constant k ∈ N. Then indeed, by rescaling the whole picture
by a factor of 1

k , we get (12) for the net 1
k · Y with 1

k · U instead of U , α
kd

instead of α and a different constant C1. Since 1
k ·U is a finite union of unit

cubes, by [L92], we get a bounded displacement Φ′ : 1
k · Y → α1/d 1

k · Zd,
which implies the existence of the required Φ.

We pick the constant α as in (8). Since H is a Pisot substitution, we fix
ε > 0 such that |λ2|+ ε < 1 (By Proposition 3.2 λ1 = ξd > 1). Then let N
be such that (13) holds for every tile T ∈ τm where m ≥ N . Let R and r be
constants such that every ball of diameter R contains a tile of τ0 and every
tile of τ0 contains a cube of area r. Let U be a finite union of cubes in Rd

with an edge of length k =
⌈
R · ξN

⌉
. Let m be the maximal integer such

that U contains a tile of τm. Then by the definition of k we have m ≥ N .
Define the following sequence of patches:

Pm = {T ∈ τm : T ⊆ U}
and for decreasing l = m− 1, . . . , N

Pl =



T ∈ τl : int(T ) ⊆ U r

m⋃

j=l+1

Vj



 ,

where Vl = supp(Pl) and int(T ) is the interior of T .
Define V∂ = U r

⋃m
j=N Vj , then we get a partition of U to layers that

intersect only at their boundaries:

(16) U =

(
m⋃

l=N

Vl

)
∪ V∂ ,

which implies

µd(U) =

(
m∑

l=N

µd(Vl)

)
+ µd(V∂).
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We now estimate #Pl. Notice that for every x ∈ U , if d(x, ∂U) ≥ R · ξl

then any ball of diameter R · ξl that contains x is contained in U . Then
the tile of τl that contains x is contained in U . In particular we get it for
l = m + 1. But since no tile of τm+1 is contained in U , we deduce that
d(x, ∂U) < R · ξm+1 for every x ∈ U . Therefore

µd(U) ≤ µd

({
x ∈ U : d(x, ∂U) < R · ξm+1

}) (15)

≤ C · (Rξm+1)dµd−1(∂U).

Since every tile of τm contains a cube of area r(ξd)m we have

#Pm ≤ C(Rξm+1)dµd−1(∂U)
r(ξd)m

=
C(Rξ)dµd−1(∂U)

r
.

In a similar way, for every l, if d(x, ∂U) ≥ R · ξl+1 then the tile of τl+1

that covers x is in Pl+1, thus x /∈ Vl. Hence for every x ∈ Vl we have
d(x, ∂U) < R · ξl+1 and so

µd(Vl) ≤ µd

({
x ∈ U : d(x, ∂U) < R · ξl+1

}) (15)

≤ C · (Rξl+1)dµd−1(∂U),

which implies

(17) #Pl ≤ C(Rξl+1)dµd−1(∂U)
r(ξd)l

=
C(Rξ)dµd−1(∂U)

r
.

Similarly we get

µd(V∂) ≤ C(RξN )dµd−1(∂U)

#(V∂ ∩ Y ) ≤ C(RξN )dµd−1(∂U)
r

.
(18)

If we denote by T (l) tiles of τl, then for every l ≥ N we have

|#(Vl ∩ Y )− αµd(Vl)| =
∣∣∣∣∣∣

∑

T (l)⊆Vl

#(T (l) ∩ Y )− α ·
∑

T (l)⊆Vl

µd(T (l))

∣∣∣∣∣∣

≤
∑

T (l)∈Pl

∣∣∣#(T (l) ∩ Y )− αµd(T (l))
∣∣∣

(13),(17)

≤ C(Rξ)dµd−1(∂U)
r

· C3 · (|λ2|+ ε)l

≤ C4 · (|λ2|+ ε)l · µd−1(∂U),

14



where C4 = C·C3·(Rξ)d

r . Therefore, according to (18), we denote C5 =

max
{

α · C(RξN )d, (RξN )d

r

}
and get

|#(U ∩ Y )− αµd(U)|
(16)

≤
[

m∑

l=N

|#(Vl ∩ Y )− αµd(Vl)|
]

+ |#(V∂ ∩ Y )− αµd(V∂)|

≤
[

m∑

l=N

C4 · (|λ2|+ ε)l · µd−1(∂U)

]
+ C5 · µd−1(∂U) ≤ C1 · µd−1(∂U),

where C1 = C4

(∑∞
l=1(|λ2|+ ε)l

)
+ C5.

Proof of Corollary 1.5. If we denote by H the substitution of the Penrose

Tiling then AH =
[
2 1
1 1

]
. In this case we have λ2 = 3−√5

2 < 1. By Theorem

1.4 the proof is complete.
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